[Golang] Factorial digit sum - Problem 20 - Project Euler
Problem: [1]
n! means n × (n − 1) × ... × 3 × 2 × 1
For example, 10! = 10 × 9 × ... × 3 × 2 × 1 = 3628800, and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27.
Find the sum of the digits in the number 100!
Solution:
We use large number multiplication [2] to calcualte 100!
100! = 93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000
sum of digits = 648
package main
import (
"fmt"
"strconv"
)
const MaxDigits = 200
const BASE = 10
func MakePositiveInt(s string) (n [MaxDigits]int) {
// make n zero
for i := 0; i < MaxDigits; i++ {
n[i] = 0
}
for index, digit := range s {
i := len(s) - index - 1
switch digit {
case '0':
n[i] = 0
case '1':
n[i] = 1
case '2':
n[i] = 2
case '3':
n[i] = 3
case '4':
n[i] = 4
case '5':
n[i] = 5
case '6':
n[i] = 6
case '7':
n[i] = 7
case '8':
n[i] = 8
case '9':
n[i] = 9
default:
panic("invalid digit in number string")
}
}
return
}
func AddPositiveInt(a, b [MaxDigits]int) (c [MaxDigits]int) {
var carry, sum = 0, 0
// make c zero
for i := 0; i < MaxDigits; i++ {
c[i] = 0
}
for i := 0; i < MaxDigits; i++ {
sum = a[i] + b[i] + carry
if sum >= BASE {
carry = 1
sum -= BASE
} else {
carry = 0
}
c[i] = sum
}
if carry != 0 {
panic("overflow in addition")
}
return
}
func MultiplyOneDigit(a [MaxDigits]int, n int) (b [MaxDigits]int) {
var carry = 0
// make b zero
for i := 0; i < MaxDigits; i++ {
b[i] = 0
}
for i := 0; i < MaxDigits; i++ {
b[i] = n * a[i]
b[i] += carry
if b[i] >= BASE {
carry = b[i] / BASE
b[i] %= BASE
} else {
carry = 0
}
}
if carry != 0 {
panic("overflow in multiplication")
}
return
}
func ShiftLeft(a [MaxDigits]int, n int) [MaxDigits]int {
var i int
for i = MaxDigits - 1; i >= n; i-- {
a[i] = a[i-n]
}
for i >= 0 {
a[i] = 0
i -= 1
}
return a
}
func MultiplyPositiveInt(a, b [MaxDigits]int) (c [MaxDigits]int) {
// make c zero
for i := 0; i < MaxDigits; i++ {
c[i] = 0
}
for i := 0; i < MaxDigits; i++ {
tmp := MultiplyOneDigit(b, a[i])
tmp = ShiftLeft(tmp, i)
c = AddPositiveInt(c, tmp)
}
return
}
func PrintPositiveInt(a [MaxDigits]int) {
isLeadingZero := true
for i := MaxDigits - 1; i >= 0; i-- {
if isLeadingZero && a[i] == 0 {
continue
} else {
isLeadingZero = false
fmt.Print(a[i])
}
}
fmt.Println("\n")
}
func main() {
result := MakePositiveInt("1")
for i := 2; i <= 100; i++ {
s := strconv.Itoa(i)
tmp := MakePositiveInt(s)
result = MultiplyPositiveInt(result, tmp)
}
PrintPositiveInt(result)
sum := 0
for i := 0; i < MaxDigits; i++ {
sum += result[i]
}
fmt.Println(sum)
}
Tested on: Go Playground
References:
[1] | Factorial digit sum - Problem 20 - Project Euler |
[2] | [Golang] Large Positive Integer Multiplication |